RNA interference targeted to multiple P2X receptor subtypes attenuates zinc-induced calcium entry.

نویسندگان

  • Lihua Liang
  • Akos Zsembery
  • Erik M Schwiebert
چکیده

A postulated therapeutic avenue in cystic fibrosis (CF) is activation of Ca(2+)-dependent Cl(-) channels via stimulation of Ca(2+) entry from extracellular solutions independent of CFTR functional status. We have shown that extracellular zinc and ATP induce a sustained increase in cytosolic Ca(2+) in human airway epithelial cells that translates into stimulation of sustained secretory Cl(-) transport in non-CF and CF human and mouse airway epithelial cells, cell monolayers, and nasal mucosa. On the basis of these studies, the Ca(2+) entry channels most likely involved were P2X purinergic receptor channels. In the present study, molecular and biochemical data show coexpression of P2X(4), P2X(5), and P2X(6) subtypes in non-CF (16HBE14o(-)) and CF (IB3-1) human bronchial epithelial cells. Other P2X receptor Ca(2+) entry channel subtypes are expressed rarely or not at all in airway epithelia, epithelial cell models from other CF-relevant tissues, or vascular endothelia. Novel transient lipid transfection-mediated delivery of small interference RNA fragments specific to P2X(4) and P2X(6) (but not P2X(5)) into IB3-1 CF human airway epithelial cells inhibited extracellular zinc- and ATP-induced Ca(2+) entry markedly in fura-2 Ca(2+) measurements and "knocked down" protein by >65%. These data suggest that multiple P2X receptor Ca(2+) entry channel subtypes are expressed in airway epithelia. P2X(4) and P2X(6) may coassemble on the airway surface as targets for possible therapeutics for CF independent of CFTR genotype.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular zinc and ATP restore chloride secretion across cystic fibrosis airway epithelia by triggering calcium entry.

Cystic fibrosis (CF) is caused by defective cyclic AMP-dependent cystic fibrosis transmembrane conductance regulator Cl(-) channels. Thus, CF epithelia fail to transport Cl(-) and water. A postulated therapeutic avenue in CF is activation of alternative Ca(2+)-dependent Cl(-) channels. We hypothesized that stimulation of Ca(2+) entry from the extracellular space could trigger a sustained Ca(2+)...

متن کامل

Characterization of calcium signaling by purinergic receptor-channels expressed in excitable cells.

ATP-gated purinergic receptors (P2XRs) are a family of cation-permeable channels that conduct Ca(2+) and facilitate voltage-sensitive Ca(2+) entry in excitable cells. To study Ca(2+) signaling by P2XRs and its dependence on voltage-sensitive Ca(2+) influx, we expressed eight cloned P2XR subtypes individually in gonadotropin-releasing hormone-secreting neurons. In all cases, ATP evoked an inward...

متن کامل

Purinergic signalling is required for calcium oscillations 5 in migratory chondrogenic progenitor cells

14 Abstract Osteoarthritis (OA) is the most common form of 15 chronic musculoskeletal disorders. A migratory stem cell pop16 ulation termed chondrogenic progenitor cells (CPC) with 17 in vitro chondrogenic potential was previously isolated from 18 OA cartilage. Since intracellular Ca signalling is an impor19 tant regulator of chondrogenesis, we aimed to provide a 20 detailed understanding of th...

متن کامل

Multiple P2X and P2Y receptor subtypes in mouse J774, spleen and peritoneal macrophages.

We investigated P2 receptor expression and function in macrophages from mouse, and in the J774 cell line, and revealed a larger spectrum of P2 receptor subtypes than previously recognised. The nucleotides adenosine triphosphate (ATP), adenosine diphosphate, uridine triphosphate and uridine diphosphate evoked an increase in intracellular calcium and the activation of a potassium current. The sen...

متن کامل

Junctate is a key element in calcium entry induced by activation of InsP3 receptors and/or calcium store depletion

In many cell types agonist-receptor activation leads to a rapid and transient release of Ca(2+) from intracellular stores via activation of inositol 1,4,5 trisphosphate (InsP(3)) receptors (InsP(3)Rs). Stimulated cells activate store- or receptor-operated calcium channels localized in the plasma membrane, allowing entry of extracellular calcium into the cytoplasm, and thus replenishment of intr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 289 2  شماره 

صفحات  -

تاریخ انتشار 2005